Evan's Space

Wonders of Physics


Leave a comment

Balloon at reduced pressure

A partially inflated balloon is placed inside a sealed container as air is pumped out of the by syringe. As the pressure of the container is reduced, the volume of the balloon increases. The pressure inside the balloon decreases.

Note that the pressure inside the balloon is not equal to the pressure of the container. The number of air molecules in the balloon is fixed. As the pressure of the container decreases, this creates a pressure difference inside and outside the balloon. This causes the balloon to expand and its volume to increase. The number of air molecules per unit volume inside the balloon decreases, hence pressure inside the balloon decreases.

But as the balloon is elastic, the wall of the balloon is stretched. Hence the pressure of the balloon will be greater than the pressure of the container. Refer to the video below.

 


Leave a comment

Boiling water at reduced pressure – Water boils at 75 oC

At sea level (where most of us are), the standard atmospheric pressure is about 101325 Pa. The boiling point of water is at 100 oC which we are familiar with.

But as you climbed up e.g. Mount Everest at 8,848 m, the pressure is low and the boiling point of the water is about 71oC. So that’s the hottest cofe you can have on top of the cold mountain!

Hence as the pressure decreases, the boiling point of the water decreases. As with lower pressure, the water molecules requires lesser energy to break the intermolecular forces to escape into the atmosphere, hence boiling point is lower.

This video shows the same effect. Using the syringe, the air is pumped out of the container to reduce the pressure. The water at 75 oC , (below the usual boiling point of 100 oC) will start to boil and you can observe the bubbles forming!

 


Leave a comment

Marshmallow Hulk in Vacuum Jar

When the pump is switched on and the air in the jar is gradually removed, the pressure in the jar decreases. There will be fewer air molecules per unit volume in the far. Hence rate of collision of the air molecules with one another and with the wall and hulk will be reduced. As pressure P = F/A, the force acting per unit area decreases, the pressure decreases.

In the marshmallow, there are pockets of air at normal atmospheric pressure initially. As the pressure in the jar decreases, the pockets of air in the marshmallow expands due to this pressure difference. Hence the hulk expands and its volume increases.