# Evan's Space

## Fiery Re-entry into Earth’s Atmosphere (updated)

This post was updated following the first astronauts launched by SpaceX returned home safely on 3 Aug 2020.

SpaceX’s Crew Dragon heat shield shown off after first orbital-velocity reentry

How do spacecraft re-enter the Earth? | HowStuffWorks

Why Is It So Difficult For A Returning Spacecraft To Re-Enter Our Atmosphere?

Returning from Space: Re-entry – PDF format

SpaceX In-Flight Abort Test

SpaceX Falcon Heavy- Elon Musk’s Engineering Masterpiece

Shuttle Atlantis STS-132 – Amazing Shuttle Launch Experience

How to Land the Space Shuttle… from Space

## Understanding Newton’s 1st and 2nd Laws of Motion

1) Newton’s first law states that an object will remain at rest or in uniform motion (constant speed) in a straight line unless an external force acts on the body.

In other words, when a body is at rest or moving at constant speed in a straight line (constant velocity), straight away you should know it is Newton’s first law. Next you must know these 3 basics concepts about 1st law:
– forces acting on the body are balanced
– net force / resultant force acting on the body is zero
– there is no acceleration.

2) Newton’s second law states that when a net force (resultant force) acts on a body, it will cause an acceleration on the body (accelerating or decelerating).

Basically F = ma where F is the net or resultant force in N,
m is the mass in kg
a is the acceleration in ms-2

In other words, when a body is moving faster or slower (or going round a bend), you should know its Newton’s second law. Next you must know these 3 basic concepts about 2nd law:
– forces acting on the body are not balanced
– there is a net force / resultant force acting on the body
– there is an acceleration
(accelerating of net force is in the direction of motion, or decelerating if the net force is opposite to the direction of motion)

## Parachute Jump – Speed-time graph

In a typical parachute jump, there are various distinct stages/sections as you can see from the graph in the video below.

AB = constant acceleration, free fall, a = 10 ms-2
BC = decreasing acceleration
CD = constant speed, zero acceleration
at D = the time where the parachute is fully opened
DE = constant deceleration
EF = lower constant speed, zero acceleration
FG = constant deceleration

After you have learned Dynamics, you should be able to explain each stage using forces acting on the skydiver, namely the weight and air resistance.

Refer to the video below to understand the motion at various stages and how to explain in terms of forces, esp the part on why the acceleration is decreasing during BC.

You can refer to the detailed explanation in words in the comics below. Hope this post helps you to understand better!

## Fiery Re-entry into Earth’s Atmosphere

SpaceX’s Crew Dragon heat shield shown off after first orbital-velocity reentry

How do spacecraft re-enter the Earth? | HowStuffWorks

Why Is It So Difficult For A Returning Spacecraft To Re-Enter Our Atmosphere?

Returning from Space: Re-entry – PDF format

SpaceX In-Flight Abort Test

SpaceX Falcon Heavy- Elon Musk’s Engineering Masterpiece

Shuttle Atlantis STS-132 – Amazing Shuttle Launch Experience

How to Land the Space Shuttle… from Space

## During impact of a free falling ball, the force on ground is greater than the weight of ball

In this post, it shows a free-falling ball from a height of 1.0 m. During the impact, the direction of the force on the ground is downwards and the force on the ground by the ball is greater then the weight.

As the ball is free-falling, the only force acting is its weight downwards. Hence a common misconception is to think that the force on the ground during impact is equal to the weight. This is wrong.

The normal force (force on the ball by the ground = stopping force on the ball by the ground) is greater than the weight.

The force on the ball by the ground is equal and opposite to the force on the ground by the ball. Hence the magnitude of the force on the ground is greater than the weight.

Similar concept can be applied if a man jumps off from a height. But in this case, the man’s leg will exert a stopping force over a short distance. That stopping force, once again, is greater than the weight of the man.

## Man Jumps Vertically Upwards, Pressure On Ground Is Greater During The Jump

This concept is similar to a 2016 O-Level Pure Physics Question P2 Q2, on why the pressure acting on the ground is greater during the jump, compared to when he is standing stationary on the ground.

During the jump, his leg will exert an upward force. This upward force (equivalent to normal force or force on the man by the ground) is greater than the weight of the man. Hence there is a net (resultant force) upwards, causing him to accelerate upwards.

That force on the man by the ground is equal and opposite to the force on the ground by the man. This is an action-reaction pair. Since the force exerted on the ground by the man is greater (greater than weight), the pressure exerted on the floor is greater.

(NOTE: Normal force and Weight is not an action-reaction pair)

## Steel is used to make permanet magnet

Steel is a hard magnetic material. When magnetized, it is not as strong as soft iron. But steel retains its magnetism, hence it is used to make permanent magnets e.g compass need, speaker, fridge door.

Iron is a soft magnetic material. It can be easily and strongly magnetised. But it loses its magnetism easily. Hence it is used to make temporary magnet e.g. Electromagnet.

Do remember that compass is like a freely suspended magnet. It is made of steel!

## Light and sound wave diagram in different mediums with different density

Light and sound are both waves. So both carry energy from one place to another.

Light, which is part of the electromagnetic spectrum, is a transverse wave, It can travel through a vacuum at speed 3.0 x 108 m/s. As the light travels from an optically less dense medium (air) to an optically denser medium (liquid or glass), the light undergoes refraction and bends towards the normal due to a decrease in speed.

Light: Optically less dense medium to denser medium:
– speed decreases
– wavelength shorter
– frequency remains constant

Sound is a longitudinal wave. It requires a medium to pass through and it cannot pass through a vacuum. Opposite to light, as the sound travels from a less dense medium (air) into a denser medium (water or solid), the speed increases.

Sound: Less dense medium to denser medium:
– speed increases
– wavelength longer
– frequency remains constant

Refers to the image below to understand how the waves behave in different mediums.
Click here to revise on the calculation of refractive index for light

## Different kind of sounds

Students tend to think that ultrasound is a totally different kind of wave, or it is part of the electromagnetic spectrum, which is wrong!

The different kind of waves below are just different kind of sounds. So the properties of sound apply to all. Ultrasound is also sound wave, just that the frequency is greater than 20 kHz which is outside the range of audible frequencies for us.

Radio Waves vs Sound – Similarities and Differences

Transverse Waves and Longitudinal Waves

## Which is better to cool the food?

Other examples in our daily lives:

In some supermarket, the seafood are placed outside of air-conditioned place. The seafood is kept cold by putting crushed ice covering the seafood to keep the them cold and fresh.

Refer to this Sci Physics question N2008P2Q6(b)

Solutions:
For the solid that does not melt, when thermal energy is absorbed from the surrounding  food, its temperature starts to rise. So it is not so effective at keeping the food cool.
For ice-pack, when thermal energy is absorbed from the surrounding food, it starts to melt. During melting process, a much larger quantity of thermal energy is absorbed from the food to melt per unit mass of ice, the temperature remains constant at 1oC, and the melting process is long. Hence ice-pack is more effective at keeping the food cool.

Density of ice – Why ice floats on water?

Will whole lake be frozen during winter?

## Electromagnetic Spectrum – updated

One amendment done – Mobile communication should be using microwaves.

## Why lighting circuit should be connected in parallel?

Lighting circuit, in fact all circuits at home, should be connected in parallel.

Reasons being:
When one bulb is spoilt or switched off, the rest of the bulbs can still function normally at normal brightness. This is because the potential difference across each bulb in the branches remains the same.

Refer to series and parallel circuits summary.

If the lighting circuit is connected in series, when one bulb is spoilt or switched off, it will be an open circuit and no current can flow through the circuit. Hence all the bulbs cannot function.

Refer this post for the concept of earth wire and the fuse

## Rules of Series and Parallel Circuits

Rules of Series and Parallel Circuits

To understand direct current (DC) circuits, the best way is to think in terms of river system.

Series Circuit

Parallel Circuit

Series and Parallel Circuit

Examples:

## Conservation of Energy – Swinging Bowling Ball

Click here to view a lecture on COE by Walter Lewin. This comic is inspired by his demo at approx 48 mins of the video.

## Will the whole lake be frozen during winter? At what temperature is water at its max density?

During summer, though the surrounding is hot, the water in the lake will not reach very high temperature mainly due to its high specific heat capacity. In general, cool water sinks as it is denser and warm water rises as it is less dense, the bottom of the lake will always be lower temperature compared to near the surface. The bottom of the lake may not necessary be 4 degree Celsius.