Evan's Space

Wonders of Physics


Leave a comment

Unsual Behaviour of Less Dense Balloon in Air or Water

ballon movement in denser air or water

Answer: Option A

Of course if a heavy ball is suspended from the car we all know the ball will move in opposite direction of a decelerating car due to inertia. We are all familiar to this where inertia is applied to a body which is denser than the surrounding medium (air or liquid) which is less dense. That’s why this balloon’s behaviour surprises us!

Let’s assume the water molecules are initially moving at constant speed with the tank before the deceleration.  Due to inertia, when the tank decelerates, the water molecules continue its state of motion forward. Hence the water molecules gush to the right side of the tank, displacing (pushing) the balloon to the left. Hence the balloon moves to the left!

Refer to this Youtube video by Smarter Everyday and you can see the similar experiment of helium balloon (less denser) in the air (denser) of a car.

 

Advertisements


Leave a comment

Marshmallow Hulk in Vacuum Jar

When the pump is switched on and the air in the jar is gradually removed, the pressure in the jar decreases. There will be fewer air molecules per unit volume in the far. Hence rate of collision of the air molecules with one another and with the wall and hulk will be reduced. As pressure P = F/A, the force acting per unit area decreases, the pressure decreases.

In the marshmallow, there are pockets of air at normal atmospheric pressure initially. As the pressure in the jar decreases, the pockets of air in the marshmallow expands due to this pressure difference. Hence the hulk expands and its volume increases.


Leave a comment

When to use the concept PV = constant and P1V1 = P2V2 to solve?

When temperature is constant (for o-level), when a fixed mass of gas (fixed number of air molecules) is compressed in a closed system (e.g. piston), the volume V decreases and pressure P increases, and vice versa.

But when you multiply pressure and volume, PV, it is always a constant.

PV = constant

Hence we can always equate the PV of the first scenario = to the PV of the second scenario, provided there is no addition or removal of air molecules from the system.

Hence, you have P1V1 = P2V2

The followings are 4 different questions which require this concept to solve. Do revise them.

Solutions: Option D (refer to the worked solutions below)

Solutions: Option D

Solutions: A

4)

Solutions:

 

5) img_0196

Solution: Option C

img_0194img_0195


Leave a comment

Gas expands and contracts the most

The 3 states of matter –  solid, liquid and gas.

In general, when a body is heated, it expands and volume increases. The mass remains the same. Since density = mass/volume, its density decreases (less dense). For instance, warm air rises as it is less dense. In terms of kinetic theory, the particles will increase in kinetic energy. The average spacing between the particles increases (assuming not in a closed container).

Likewise, when a body is cooled, the opposite occurs. The body contracts and volume decreases. It becomes denser.

Due to the differences in particles arrangement of solid, liquid and gas, each expands by different amount when heated and vice versa. Which expands the most when heated and contracts the most when cooled?

The following demonstration of the ‘Pee Boy’ is a good video to show the concepts.


<p><a href=”https://vimeo.com/25123645″>Pee Boy</a> from <a href=”https://vimeo.com/user7367248″>evantoh</a&gt; on <a href=”https://vimeo.com”>Vimeo</a&gt;.</p>

Explanation:

The tiny hole at the penis is too small for any water to enter on its own. So using thermal transfer in the different states, the following steps are taken:

  1. Put the hollow empty boy into the hot water. [air inside the boy expands more than the solid ceramic, hence bubbles are seen coming out of the hole]
  2. Put the hollow empty boy now into the cold water. [The air inside contracts and volume decreases. This creates a low pressure and water is then sucked into the boy through the tiny hole]
  3. Place the boy on a platform. [The boy is only partially filled with water. The head portion is filled air while the bottom portion is filled with water]
  4. Pour hot water over the head. [As the whole boy is heated by the running hot water, the air in the head portion expands much more than the water at the bottom and the solid ceramic of the boy. Hence the air pressure increases and it pushes the water out of the boy]
  5. And he pees!!! Quite powerful indeed!


Leave a comment

2013 Nov Sci Phy P2 Q9 – Pressure and Moment

CaptureSolutions:

(a) (i) A bigger force than F can be obtained due to the level system and hydraulic system.
Level system: Applying principle of moments, the anticlockwise moment by the F is equal to the clockwise moment by the force on piston A (note that the handle is pushing the piston down, but the piston A is pushing on the handle upwards – action = reaction). As the perpendicular distance from F to the pivot is greater than the perpendicular distance of the force by piston to the pivot, the force on the piston A is greater than F at handle.
Hydraulic system: As the pressure transmitted in the liquid is the same, pressure at piston A = pressure at piston B. As P = F/A and area of piston A is smaller than area of piston B, a larger force is obtained in piston B. 
Hence these two systems allow the force on piston B to be greater than F at the handle.

(a) (ii) Both liquid and gas molecules are in a continuously random motion. But in liquid, the molecules are closely packed together and able to slide around one another. There is very little empty space between the molecules hence liquid is not compressible. Gas molecules are far apart from one another, hence gas can be easily compressed.

(b) P = F/A = 12000 / 0.060 = 200 000 Pa

(c) Velocity is the vector quantity while speed is a scalar. As the car goes round the bend, the direction of the car changes. Hence velocity is changing even though speed is constant.

Likewise, as the velocity is changing, the car is considered to have an acceleration (not in the sense of increasing speed though).